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Time optimal controllability for in�nite dimensional systems

In the frame of the present project the following activities took place: documentation, updating the
bibliography, conferences, scientic contacts, analysis, research and publication of the results. We have
published a paper in an ISI journal and we have submitted for publication three other papers in ISI
journals. Other two papers are in preparation.

The research objectives for the mentioned period of time are:
Stage 1. To establish new regularity results for the cost functions associated to a linear system.
Stage 2. To prove the equivalence between the minimum time problem and the minimum norm

control associated to a linear system.
All these research objectives were realized. In the following we give a presentation of the main

results obtained.

Let X and U be two Banach spaces and consider the control system represented by

y (t; x; u) = S (t)x+ V (t)u; t > 0 (1)

y (0; x; u) = x;

where y is the state, t the time and u the control. Here, fS(t); t � 0g is a C0-semigroup on X and
fV (t) ; t > 0g is a family of bounded linear operators, V (t) : L1 (0; t;U)! X, such that the following
condition is satis�ed

V (t1 + t2)u = S (t2)V (t1)u+ V (t2) Jt1u; (2)

for all t1; t2 > 0 and u 2 L1(0; t1 + t2;U); where Jt1 is a translation operator given by

(Jt1u) (s) = u (s+ t1) (3)

for s � 0: Clearly, in V (t1)u we have considered the restriction of u to [0; t1] : Further, assume that for
each u 2 L1(0;+1;U) we have that t 7! V (t)u is continuous and limt!0 V (t)u = 0.

The typical example is the distributed control system

y0(t) = Ay(t) +Bu(t); (4)

where A is the generator of fS(t); t � 0g and B is linear and bounded from U to X. In this case,
V (t)u =

R t
0 S(t � s)Bu(s)ds. The operator B could be also unbounded to cover the boundary control

systems.
For r > 0 and t > 0 de�ne

Ur (t) = fu 2 L1(0; t;U); kuk1 � rg:
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Denote by Cr (t) the null controllable set at time t > 0; i.e., the set of all points x 2 X for which
there exists u 2 Ur (t) with y(t; x; u) = 0: Consider Cr (0) = f0g and set Cr =

S
t�0 Cr(t); called the null

controllable set, and de�ne the minimum time function T : (0;+1)�X ! [0;+1] by

T (r; x) =
�
infft � 0; x 2 Cr(t)g; if x 2 Cr

+1; elsewhere.

For t > 0 and x 2 X; denote byM(t; x) the (possibly empty) set of controls u 2 L1(0; t;U) such
that y(t; x; u) = 0 and de�ne the control cost to bring x to 0 as the function E : (0;+1)�X ! [0;+1]
given by

E(t; x) = inf
u2M(t;x)

kuk1 :

The basic hypothesis we shall refer to in the sequel is the following.
(H) There exists 
 : (0;+1)! (0;+1) such that

S(t)B(0; 
(t)) � V (t)B(0; 1); (5)

for any t > 0. Here, B(0; 
(t)) is the closed ball of radius 
(t) from X, while B(0; 1) is the closed unit
ball from L1(0; t;U), i.e., U1(t).

By the open mapping theorem, (5) is equivalent to

Range (S (t)) � Range (V (t)) ;

which means that all points of X can be transferred to zero in time t by L1 (0; t;U)-controls.
We further state some additional hypotheses that we shall frequently use in the sequel.
(H1) X and U are re�exive Banach spaces.
(H2) For every t > 0, V (t) = H(t)� for some H(t) : X� ! L1(0; t;U�).
It is well known that for every C0-semigroup fS (t) ; t � 0g there exist M � 1 and ! 2 R such that

kS(t)k �Me!t; for any t � 0:

Propozi̧tia 0.0.1 Assume (H).
(i) For any r > 0; x 2 X and t > 0; there exists u� 2 Ur (t) such that

ky(t; x; u�)k �Me!t jkxk � r
(t)j : (6)

(ii) If kxk � r
(t); then x 2 Cr(t):
(iii) If x0 2 Cr (t) and kx� x0k � �
 (t0) for some t0 2 (0; t] and � > 0; then x 2 Cr+� (t) :
(iv) Let 0 < r1 < r2: If x 2 Cr1 (t) ; then there exists s 2 (0; t) such that x 2 Cr2 (s) :
(v) Let 0 < t1 < t2: If x 2 Cr (t1) ; then there exists r 2 (0; r) such that x 2 Cr (t2) :

In the following we give a result on the equivalence between the minimum time function and the
minimum energy and on the monotonicity of these two functions. The proof follows using the estimates
obtained in Proposition 0.0.1.
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Teorema 1 Suppose the existence of optimal controls for the minimum time and minimum energy prob-
lems. Assume (H). Then,
(i) if 0 < t1 < t2 and E (t1; x) > 0, then

E (t2; x) < E (t1; x) ;

(ii) if 0 < r1 < r2 and x 2 Cr1 ; then
T (r2; x) < T (r1; x) ;

(iii) for any r > 0 and x 2 Cr we have

E (T (r; x) ; x) = r; (7)

(iv) for any t > 0 and x 2 X we have
T (E (t; x) ; x) = t:

Observa̧tia 0.0.1 Theorem 1 says that, for r > 0 and x 2 Cr; T (r; x) is the unique solution of the
equation E (t; x) = r. Also, given t > 0 and x 2 X, E(t; x) is the unique solution of T (r; x) = t.

From Theorem 1 we easily get the following result.

Corolarul 0.0.1 Suppose the hypotheses of Theorem 1. Let t > 0 and u 2 L1 (0; t;U) a minimum
norm control such that y (t; x; u) = 0: Then u is a time optimal control for x; under the norm constraint
r = E (t; x) : Conversely, let r > 0 and v 2 Ur (T (r; x)) a time optimal control for x: Then v is a
minimum norm control on [0; T (r; x)] :

Further, we give estimates of the minimum time function around points in the null controllable set
and around points in the boundary of the null controllable set. Moreover, we get local uniform continuity
of the minimum time function on the null controllable set.

In what follows we denote
M
 := sup

s2R+

(s) 2 (0;+1]:

Teorema 2 Assume (H). Let r > 0. Then, for any x 2 X with kxk < rM
 we have x 2 Cr: Assume
further that the function 
 in (5) is continuous, strictly increasing and 
 (0) = 0.
(i) For any for any x 2 X with kxk < rM
, T (r; x) � 
�1 (kxk =r).
(ii) Let x 2 Cr and z 2 X such that kx� zk < (r=M) e�!T (r;x)M
 : Then z 2 Cr and

T (r; z) � T (r; x) + 
�1
�
kx� zk
r

Me!T (r;x)
�
: (8)

(iii) In the case ! > 0, if x 2 Cr and z =2 Cr; then

T (r; x) � � 1
!
log

�
kx� zkM
rM


�
:
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Consequently, limx!z T (r; x) = +1, for any z 2 @Cr:
In the case ! � 0 we have that X = Cr.
(iv) If M
 < +1; then Cr is open and for any x0 2 Cr we have

jT (r; z1)� T (r; z2)j � 
�1 (cr kz1 � z2k) (9)

for any z1; z2 2 B (x0; �r) ; where, in the case ! > 0,

cr =
M

r
e!(T (r;x0)+


�1(M
=k)) and �r =
rM


Mk
e�!(T (r;x0)+M
) (10)

for some k > maxfM
=
(M
); 2g and, in the case ! � 0,

cr =
M

r
and �r =

rM


2M
: (11)

(v) If M
 = +1; then Cr = X and, in the case ! > 0, for any x0 2 X and any � > 0 there exists

cr =
M

r
e!(T (r;x0)+


�1(M�=re!T (r;x0))) (12)

such that (9) holds for any z1; z2 2 B (x0; �). In the case ! � 0, (9) holds for any z1; z2 2 X where
cr =M=r.

One of the main results obtained is the continuity of the minimum time function T , as a function
of both variables. To prove that, we need to show �rst that T is continuous in the �rst variable.

Propozi̧tia 0.0.2 Assume (H). Moreover, assume that U is a re�exive Banach space and (H20) holds.
Let r0 > 0 and x 2 Cr0 : Then T (�; x) is continuous in r0:

Observa̧tia 0.0.2 Since E (�; x) and T (�; x) are inverse one to another, under the hypotheses of Propo-
sition 0.0.2 , we get that E (�; x) is continuous on (0;+1) : Let us consider the function

E (t) = sup
kxk�1

E(t; x); t > 0;

which is lower semicontinuous. Then, we can get a function 
� satisfying (5) which is upper semicon-
tinuous. Indeed, de�ne


�(t) = sup f
(t); 
 satis�es (5)g :

It is easy to prove that

E (t) = 1


�(t)
;

hence 
� is upper semicontinuous.

Now, using Theorem 2 and Proposition 0.0.2, we can prove the main result of this section, on the
continuity of T :
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Teorema 3 Assume the hypotheses of Theorem 2 and (H1). Let r0 > 0 and x0 2 X be such that
x0 2 Cr0 : Then the minimum time function T is continuous in (r0; x0) :

We prove the Lipschitz continuity of the minimum energy function in the state variable.

Propozi̧tia 0.0.3 Assume (H). Then, for every x; z 2 X and every t > 0; we have

jE (t; x)� E (t; z)j � 1


 (t)
kx� zk :

Moreover, we studied two main situations when the limit of Pareto minima of a sequence of per-
turbations of a set-valued map F is a critical point of F . The concept of criticality is understood in the
Fermat generalized sense by means of limiting (Mordukhovich) coderivative. Firstly, we consider per-
turbations of enlargement type which, in particular, cover the case of perturbation with dilating cones.
Secondly, we study the case of Aubin type perturbations, and for this we introduce and study a new
concept of openness with respect to a cone.

We brie�y present next the main results.
Let K � Y be a convex closed cone and, additionally, we suppose it is as well pointed (that is,

K \ �K = f0g) and proper (that is, K 6= f0g). Consider F : X � Y as a set-valued mapping, and
introduce the unconstrained optimization problem where F is the objective

(P ) minimize F (x); subject to x 2 X:

The standard Pareto minimality for this problem is stated in the next de�nition as the e¢ ciency
with respect to the partial order �K induced on Y by K on the basis of the equivalence y1 �K y2 i¤
y2 � y1 2 K:

De�ni̧tia 1 A point (x; y) 2 GrF is a Pareto minimum point for F; or a Pareto solution for (P ); if
there exists " 2 (0;1] such that

[F (B(x; "))� y] \ �K = f0g: (13)

If intK 6= ;; (x; y) 2 GrF is a weak Pareto minimum point for F; or a weak Pareto solution for (P ); if
there exists " 2 (0;1] such that

[F (B(x; "))� y] \ � intK = ;:

Obviously, in the above de�nitions, the case " 2 (0;1) corresponds to the local minima, while the
case " = +1 describes the global solutions. We mention that the main results of this work apply to
both situations.

It is easy to see that (x; y) is a minimum for F (in any of the above senses) i¤ it is a minimum of
the same type for the epigraphical set-valued map ~F : X � Y; ~F (x) = F (x) +K:

Consider now a sequence (Fn) of set-valued mappings acting between X and Y . We associate the
sequence of optimization problems, with respect to the same order �K ; as

(Pn) minimize Fn(x); subject to x 2 X:
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The main problem we discuss is the following one: having a sequence (xn; yn) 2 GrFn of Pareto
minima for (Pn) (for all n) such that (xn; yn) ! (x; y) 2 GrF; what can we say about the point (x; y)
in relation with problem (P ) when (Fn) are, in a sense, approximations of F?

A well known fact is that, in general, (x; y) is not a Pareto minimum, even under nice convergence
properties of (Fn) towards F . Basically, we propose ourselves to describe some general situations when
the approximation properties of the sequence (Fn) ensure that (x; y) is a critical point for (P ):

We present next the �rst of the main results, and for this consider the set-valued mappings (Fn);
F as the objectives of the problems (Pn) and (P ) introduced before.

Teorema 4 Suppose that X;Y are Asplund spaces, and take (x; y) 2 GrF: Consider a sequence (xn; yn)!
(x; y) such that (xn; yn) 2 GrFn is a minimum of radius "n > 0 for Fn for all n: Assume that:
(i) GrF is locally closed at (x; y);
(ii) K is (SNC) at 0; or F�1 is (PSNC) at (y; x);
(iii) lim inf "n > 0;
(iv) there exists a function ' : [0;1)! [0;1) with limt!0 '(t) = '(0) = 0 such that, for all n; and for
all small �

~F (B(x; �)) � ~Fn(B(x; �+ '(�))): (14)

Then there exists v� 2 K+ n f0g such that

0 2 D�F (x; y)(v�);

that is, (x; y) is a critical point of F:

The second situation we study uses a new notion of openness, which reads as follows: given a
multifunction F : X � Y; a cone K � Y; a point (x; y) 2 GrF; and two constants �; � > 0; one says
that F is (�; �)�open with respect to K at (x; y) if there exists " > 0 such that, for any � 2 (0; ") ;

B(y; ��) � F (B(x; �)) +K \B(0; ��): (15)

First, we formulate a result concerning the stability of openness with respect to a cone at Lipschitz
perturbations in the global case.

Teorema 5 Let K be a closed convex cone, and F;G : X � Y be two multifunctions such that GrF
and GrG are locally closed. Suppose that Dom(F +G) is nonempty and let � > 0; � > 0 and 
 > 0 be
such that � > �: If F is (�; 
)�open with respect to K at every point of its graph, and if G is ��Aubin
at every point of its graph, then F +G is (�� �; 
)�open with respect to K at every point of its graph.

A similar result, formulated for the local case, holds, which involves the additional property of
sum-stability of the pair (F;G) around the reference point.

The main result in this case is given by the next theorem.

Teorema 6 Suppose that X;Y are Asplund spaces, and take (x; y) 2 GrF . Take Gn : X � Y and
consider a sequence (xn; yn)! (x; y) such that (xn; yn) 2 Gr(F +Gn) is a minimum or F +Gn for all
n: Suppose that:
(i) GrF is locally closed at (x; y) and for all n; GrGn is locally closed at every point from its graph close
to (x; 0);
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(ii) K is (SNC) at 0 or F�1 is (PSNC) at (y; x);
(iii) for all n; there is �n > 0 such that Gn in �n�Aubin around every point from its graph close to
(x; 0), and �n ! 0;
(iv) for all n; the pair (F;Gn) is locally sum-stable around (x; y;0):
Then there exists v� 2 K+ n f0g such that

0 2 D�F (x; y)(v�);

that is, (x; y) is a critical point of F:
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